

Sahand University of Technology

Electrical Engineering Department

A Thesis Submitted in Partial Fulfillment of the Requirement for the

Degree of Bachelor of Science in Biomedical Engineering

Title

Adaptive Control Using NARMA-L2 Model for

Nonlinear Systems

By

Jamal Saeedi

Supervisor

Dr. Mahdi Zeinali

July 2007

Copyright © 2007 by Jamal Saeedi. All rights reserved. Reproduction

by any means or translation of any part of this work is forbidden

without permission of the copyright holder.

To my father Saeed, my mother Shahrbanoo

and my sisters Zari and Roza

 Abstract

v

Abstract

This thesis considers the problem of using approximate methods for realizing

the neural controllers for nonlinear multivariable systems. The nonlinear

autoregressive-moving average (NARMA) model is an exact representation of the

input–output behavior of finite-dimensional nonlinear discrete time dynamical

systems in a neighborhood of the equilibrium state. However, it is not convenient

for purposes of adaptive control using neural networks due to its nonlinear

dependence on the control input. Hence, quite often, approximate methods are used

for realizing the neural controllers to overcome computational complexity. In this

thesis, we introduce two classes of models which are approximations to the

NARMA model, and which are linear in the control input, namely NARMA-L1 and

NARMA-L2. The latter fact substantially simplifies both the theoretical analysis as

well as the practical implementation of the controller. Extensive simulation studies

have shown that the neural controllers designed using the proposed approximate

models perform very well, and in many cases even better than an approximate

controller designed using the exact NARMA model. In view of their mathematical

tractability as well as their success in simulation studies, a case is made in this

paper that such approximate input–output models warrant a detailed study in their

own right. The MATLAB simulation of the project is also provided from the

following link: [code].

Key Words: Neural Networks, Identification, Adaptive Control, Input-output

Models, Error Back propagation.

https://www.researchgate.net/publication/293332158_Matlab_Codes_of_Adaptive_Control_Using_NARMA-L2_Model_for_Nonlinear_Systems?ev=prf_pub
https://www.researchgate.net/publication/293332158_Matlab_Codes_of_Adaptive_Control_Using_NARMA-L2_Model_for_Nonlinear_Systems?ev=prf_pub

 Table of Contents

vi

Table of Contents

Abstract ..v

Table of Contents .. vi

Chapter 1. Introduction ...1

Chapter 2. Neural Networks ..4

2.1 Multilayer perceptron (MLP) ... 6

2.2 Error back propagation (EBP) training ... 10

2.3 Nonlinear systems identification using neural networks .. 14

Chapter 3. Adaptive Control Using Neural Networks .. 20

3.1 Direct adaptive control ... 23

3.2 Indirect adaptive control ... 24

3.3 NARMA model and its approximations ... 25

3.4 Identification using NARAM-L2 model .. 27

3.5 Adaptive control using NARAM-L2 model ... 27

Chapter 4. Simulation Results .. 30

4.1 Algorithm design for identification .. 30

4.1.1 MATLAB simulation .. 31

4.1.2 Identification examples ... 34

4.2 Algorithm design for adaptive control .. 46

4.2.1 MATLAB simulation .. 46

4.2.2 Adaptive control examples .. 50

Chapter 5. Conclusions ... 60

References .. 61

 Chapter 1. Introduction

1

Chapter 1. Introduction

This Chapter describes definitions, neural networks, adaptive control of non-linear

dynamic systems, and the thesis’ organization.

Models of neural networks have been studied for many years in hopes of creating a

similar function to the human brain in topics such as speech recognition,

identification, control, and so on [1]. These models consist of a large number of

nonlinear computational members that work parallel to each other and are connected

to each other through adaptive weights.

In fact, the following four characteristics of neural networks make them the best

candidate for identifying and controlling the nonlinear dynamic systems [2-4]:

1. Parallel processing with a large amount of information: We know that the control

systems have a large amount of information through the sensors at any moment.

Therefore, to carry out an accurate control, the need for rapid processing of this

information is vital; neural networks are capable of doing so.

2. Neural network has the capability of generalizing nonlinear functions to any desired

degree of accuracy.

3. Learning Ability: As we know, there are uncertainties in the control of a series of

systems and include a series of un-known parameters. Parameters must be identified

to solve this problem, and neural networks with high learning ability can do this job.

 Chapter 1. Introduction

2

4. High reliability: We know that in a neural network a complex problem is divided

into small parts, and each nerve takes up one part of the problem, so the control

system is not affected by the failure of one or more nerve cells. It is very useful

property for a control system.

Given the mentioned advantages, neural networks would be the best candidate for

identifying the nonlinear dynamic systems. The remarkable learning capability of

neural networks is leading to their application in identification and adaptive control of

dynamical systems. A neural network is basically composed of many neurons and

interconnections with a particular architecture. Neural networks with relatively

complex architectures tend to be more powerful in learning functional mapping but

are more difficult to train [5-8].

The problem of controlling a plant can be conveniently divided into the

regulation and tracking problems. In the former, the main objective is to stabilize the

plant around a fixed operating point. In the later, the aim is to make the output of the

plant follow a specified signal asymptotically. While our ultimate goal is to determine

the control input, 𝑢, based only on output measurement for both regulation and

tracking. We will confine our attention in this thesis to the problem of tracking when

the multivariable system is unknown and only input and output values are available.

One standard model that is used to represent general discrete-time nonlinear systems

is the nonlinear autoregressive-moving average (NARMA) model. In [1], it is shown

that NARMA-L1 and NARMA-L2 models were introduced as approximations of the

NARMA model for the representation of SISO nonlinear dynamical systems. It was

found that the availability of a NARMA model for a (single input-single output) SISO

nonlinear plant does not automatically imply a method of determining the

control input to track a desired output. If a neural network is used as a controller, the

parameters of the latter have to be adjusted to achieve on-line control. This involves

dynamic gradient methods that are computationally intensive. In contrast to that, since

the control input u(k) occurs linearly in the NARMA-L1 and NARMA-L2 models, it

can be computed directly from the identification model, which use static gradients.

Even though the NARMA model results in better identification of the unknown plant,

 Chapter 1. Introduction

3

the NARMA-L1 and NARMA-L2 models may actually result in better control.

Specifically, in this thesis the identification and control of unknown non-linear

dynamic systems using NARMA-L2 model is investigated.

The thesis is organized as follows: In Chapter 2, the neural networks is stated in

detail. Chapter 3 gives the description of adaptive control using neural network. In

Chapter 4, simulation results are presented. Finally, conclusion is given in Chapter 5.

 Chapter 2. Neural Networks

4

Chapter 2. Neural Networks

Mathematical systems theory has made major advances in the past four decades

and has evolved into a scientific discipline, which cuts across boundaries,

extending from design and development on the one hand to mathematics on the

other. The best developed part of the theory concerns linear systems and important

concepts as well as major theoretical results have been introduced in such areas as

stability theory, optimal control, multivariable theory and adaptive control. The

powerful techniques developed in the area of adaptive control complement current

computing technology and have enormous potential in the world of applications,

where systems have to be controlled in the presence of uncertainty. Although

adaptive systems are by their very nature nonlinear, most of the theories of such

systems are deeply rooted in linear systems theory [9].

In recent years, the multilayer neural network and the recurrent network have

emerged as important components, which have proved to be extremely successful

in pattern recognition and optimization problems. From the system-theoretic point

of view, these networks can be considered as components, which can be effectively

used in complex nonlinear systems.

Two classes of networks which have received considerable attention in the area

of artificial neural networks are (1) multilayer neural networks, and (2) recurrent

networks. A typical multilayer neural network with an input layer, an output layer

and two hidden layers is shown in Fig. 2.1. For convenience, this can be denoted in

 Chapter 2. Neural Networks

5

Figure 2.1. A three layer neural network.

Figure 2.2. Block diagram of a three layer neural network.

block diagram form as shown in Fig 2.2 with three weight matrices U, V and W.

The multilayer network represents a nonlinear map 𝑓 where 𝑓(𝑥) =

 𝐹 [𝑊𝐹[𝑉𝐹[𝑈𝑥]]] and the elements of U, V and W are adjustable weights. Such

networks have been used successfully in pattern recognition, where the weights are

adjusted to minimize a suitable error function.

In contrast to the above, the recurrent network, based on the work of Hopfield

[10], has been used as a content-addressable memory and in optimization problems.

One version of the Hopfield network is shown in Fig. 2.3 and consists of a single

layer neural network in the forward path connected to a delay in the feedback path.

The choice of the weights determines the equilibrium states of the dynamical

systems and hence the specific equilibrium to which the state trajectory converges

depends upon the initial conditions. This fact has been used for content-

addressable memories as well as optimization problems.

From a system-theoretic point of view, the multilayer network represents merely

a versatile nonlinear map. The recurrent network on the other hand, in most cases,

 Chapter 2. Neural Networks

6

Figure 2.3. The Hopfield network.

represents a dynamical system with no input. In system analysis, both types of

operators play an important role. Hence, it is desirable to study the properties of

feedback systems, which contain both types of networks as components. In [7] the

back-propagation method used for adjusting the weights in a multilayer neural

network was also suggested for adjusting the weights in a recurrent network to

increase the number of stored states.

2.1 Multilayer perceptron (MLP)

The multilayer perceptron neural network is built up of simple components. We

will begin with a single-input neuron, which we will then extend to multiple inputs.

We will next stack these neurons together to produce layers. Finally, we will

cascade the layers together to form the network.

A single-input neuron is shown in Fig 2.4. The scalar input 𝑝 is multiplied by the

scalar weight w to form 𝑤𝑝; one of the terms that is sent to the summer. The other

input, 1, is multiplied by a bias 𝑏 and then passed to the summer. The summer

 Chapter 2. Neural Networks

7

output 𝑛; often referred to as the net input, goes into a transfer function 𝑓 ; which

produces the scalar neuron output 𝑎. The neuron output is calculated as:

 𝑎 = 𝑓(𝑤𝑝 + 𝑏) (2.1)

Note that 𝑤 and 𝑏 are both adjustable scalar parameters of the neuron. Typically,

the transfer function is chosen by the designer, and then the parameters 𝑤 and 𝑏 are

adjusted by some learning rule so that the neuron input/output relationship meets

some specific goal.

The transfer function in Fig. 2.4 (a) may be a linear or a nonlinear function of 𝑛:

One of the most commonly used functions is the log-sigmoid transfer function,

which is shown in Fig. 2.4 (b).

This transfer function takes the input (which may have any value between plus

and minus infinity) and squashes the output into the range 0–1, according to the

expression

 𝑎 =
1

1+𝑒−𝑛
 (2.2)

Fig. 2.4. (a) Single-input neuron, and (b) Log-Sigmoid Transfer Function.

 Chapter 2. Neural Networks

8

The log-sigmoid transfer function is commonly used in multilayer networks that

are trained using the back-propagation algorithm, in part because this function is

differentiable.

Typically, a neuron has more than one input. A neuron with R inputs is shown in

Fig. 2.5 (a). The individual inputs 𝑝1, 𝑝2, . . . , 𝑝𝑅 are each weighted by

corresponding elements 𝑤1,1, 𝑤1,2, . . . , 𝑤1,𝑅 of the weight matrix W.

The neuron has a bias 𝑏; which is summed with the weighted inputs to form the

net input 𝑛:

 𝑛 = 𝑤1,1𝑝1 + 𝑤1,2𝑝2 . . . + 𝑤1,𝑅𝑝𝑅 (2.3)

This expression can be written in matrix form

 𝑛 = 𝐖𝐩 + 𝑏 (2.4)

where the matrix W for the single neuron case has only one row.

Now the neuron output can be written as

 𝑎 = 𝑓(𝐖𝐩 + 𝑏) (2.5)

Fig. 2.5 (b) represents the neuron in matrix form.

Figure 2.5. (a) Multiple-input neuron, (b) Neuron with R inputs, matrix notation.

 Chapter 2. Neural Networks

9

Figure 2.6. (a) Layer of S neurons, and (b) matrix notation.

Commonly one neuron, even with many inputs, is not sufficient. We might need

5 or 10, operating in parallel, in what is called a layer. A single-layer network of S

neurons is shown in Fig. 2.6 (a). Note that each of the R inputs is connected to each

of the neurons and that the weight matrix now has S rows. The layer includes the

weight matrix W; the summers, the bias vector b; the transfer function boxes and

the output vector a: Some authors refer to the inputs as another layer, but we will

not do that here. It is common for the number of inputs to a layer to be different

from the number of neurons (i.e. R = S). The S-neuron, R-input, one-layer network

also can be drawn in matrix notation, as shown in Fig. 2. 6 (b).

Now consider a network with several layers. Each layer has its own weight

matrix W; its own bias vector b; a net input vector n and an output vector a: We

need to introduce some additional notation to distinguish between these layers. We

will use superscripts to identify the layers. Thus, the weight matrix for the first

layer is written as W1; and the weight matrix for the second layer is written as W2:

This notation is used in the three-layer network shown in Fig. 2.7. As shown, there

are 𝑅 inputs, 𝑆1 neurons in the first layer, 𝑆2 neurons in the second layer, etc. As

noted, different layers can have different numbers of neurons. The outputs of layers

 Chapter 2. Neural Networks

10

Figure 2.7. Three-layer network.

one and two are the inputs for layers two and three. Thus, layer 2 can be viewed as

a one-layer network with 𝑅 = 𝑆1 inputs, 𝑆 = 𝑆2 neurons, and an 𝑆2 × 𝑆1 weight

matrix W2: The input to layer 2 is a1; and the output is a2: A layer whose output is

the network output is called an output layer. The other layers are called hidden

layers. The network shown in Fig. 2.7 has an output layer (layer 3) and two hidden

layers (layers 1 and 2).

2.2 Error back propagation (EBP) training

Now that we know multilayer networks are universal approximators, the next

step is to determine a procedure for selecting the network parameters (weights and

biases) that will best approximate a given function. The procedure for selecting the

parameters for a given problem is called training the network. In this Chapter, we

will outline a training procedure called back-propagation [11-12], which is based

on gradient descent. More efficient algorithms than gradient descent are often used

in neural network training [13].

As we discussed earlier, for multilayer networks the output of one layer becomes

the input to the following layer (see Fig. 2.7). The equations that describe this

operation are:

 𝑎𝑚+1 = 𝑓𝑚+1(𝐖𝐦+𝟏𝐚𝐦 + 𝐛𝑚+1) 𝑓𝑜𝑟 𝑚 = 0,1, … , 𝑀 − 1 (2.6)

 Chapter 2. Neural Networks

11

where 𝑴 is the number of layers in the network. The neurons in the first layer

receive external inputs:

 𝑎0 = 𝐩 (2.7)

which provides the starting point for Equation (2.6). The outputs of the neurons in

the last layer are considered the network outputs:

 𝐚 = 𝐚𝐌 (2.8)

The back-propagation algorithm for multilayer networks is a gradient descent

optimization procedure in which we minimize a mean square error performance

index. The algorithm is provided with a set of examples of proper network

behavior:

 {𝐩𝟏, 𝐭𝟏}, {𝐩𝟐, 𝐭𝟐}, … , {𝐩𝐐, 𝐭𝐐} (2.9)

where 𝑝𝑞 is an input to the network and 𝑡𝑞 is the corresponding target output. As

each input is applied to the network, the network output is compared to the target.

The algorithm should adjust the network parameters in order to minimize the sum-

squared error:

 𝑭(𝒙) = ∑ 𝒆𝒒
𝟐 =

𝑸
𝒒=𝟏 ∑ (𝒕𝒒 − 𝒂𝒒)

𝟐𝑸
𝒒=𝟏 (2.10)

where 𝐱 is a vector containing all network weights and biases. If the network has

multiple outputs this generalizes to

 𝑭(𝒙) = ∑ 𝒆𝒒
𝑻𝒆𝒒

𝑸
𝒒=𝟏 = ∑ (𝐭𝒒 − 𝐚𝒒)

𝑻
(𝐭𝒒 − 𝐚𝒒)𝑸

𝒒=𝟏 (2.11)

Using a stochastic approximation, we will replace the sum-squared error by the

error on the latest target:

 𝑭̂(𝒙) = (𝐭(𝒌) − 𝐚(𝒌))
𝑻

(𝐭(𝒌) − 𝐚(𝒌)) = 𝒆𝑻(𝒌)𝒆(𝒌) (2.12)

where the expectation of the squared error has been replaced by the squared error at

iteration 𝑘. The steepest descent algorithm for the approximate mean square error

is:

 Chapter 2. Neural Networks

12

 𝒘𝒊,𝒋
𝒎(𝒌 + 𝟏) = 𝒘𝒊,𝒋

𝒎(𝒌) − 𝜶
𝝏𝑭̂

𝝏𝒘𝒊,𝒋
𝒎 (2.13)

 𝒃𝒊
𝒎(𝒌 + 𝟏) = 𝒃𝒊

𝒎(𝒌) − 𝜶
𝝏𝑭̂

𝝏𝒃𝒊
𝒎 (2.14)

where 𝑎 is the learning rate.

For a single-layer linear network, these partial derivatives in Equations (2.13)

and (2.14) are conveniently computed, since the error can be written as an explicit

linear function of the network weights. For the multilayer network, the error is not

an explicit function of the weights in the hidden layers; therefore, these derivatives

are not computed so easily. Because the error is an indirect function of the weights

in the hidden layers, we will use the chain rule of calculus to calculate the

derivatives in Equations (2.13) and (2.14):

𝝏𝑭̂

𝝏𝒘𝒊,𝒋
𝒎 =

𝝏𝑭̂

𝝏𝒏𝒊
𝒎 ×

𝝏𝒏𝒊
𝒎

𝝏𝒘𝒊,𝒋
𝒎 (2.15)

𝝏𝑭̂

𝝏𝒃𝒊
𝒎 =

𝝏𝑭̂

𝝏𝒏𝒊
𝒎 ×

𝝏𝒏𝒊
𝒎

𝝏𝒃𝒊
𝒎 (2.16)

The second term in each of these equations can be easily computed, since the net

input to layer m is an explicit function of the weights and bias in that layer: The

second term in each of these equations can be easily computed, since the net input

to layer 𝑚 is an explicit function of the weights and bias in that layer:

 𝒏𝒊
𝒎 = ∑ 𝒘𝒊,𝒋

𝒎𝒂𝒋
𝒎−𝟏𝒔𝒎−𝟏

𝒋=𝟏 + 𝒃𝒊
𝒎 (2.17)

Therefore,

𝝏𝒏𝒊

𝒎

𝝏𝒘𝒊,𝒋
𝒎 = 𝒂𝒋

𝒎−𝟏,
𝝏𝒏𝒊

𝒎

𝝏𝒃𝒊
𝒎 = 𝟏 (2.18)

If we now define:

 𝒔𝒊
𝒎 =

𝝏𝑭̂

𝝏𝒏𝒊
𝒎 (2.19)

 Chapter 2. Neural Networks

13

(the sensitivity of 𝐹̂ to changes in the 𝑖th element of the net input at layer 𝑚), then

Equations (2.15) and (2.16) can be simplified to:

𝝏𝑭̂

𝝏𝒘𝒊,𝒋
𝒎 = 𝒔𝒊

𝒎𝒂𝒋
𝒎−𝟏 (2.20)

We can now express the approximate steepest descent algorithm as:

𝒘𝒊,𝒋
𝒎(𝒌 + 𝟏) = 𝒘𝒊,𝒋

𝒎(𝒌) − 𝜶𝒔𝒊
𝒎𝒂𝒋

𝒎−𝟏 (2.21)

𝒃𝒊
𝒎(𝒌 + 𝟏) = 𝒃𝒊

𝒎(𝒌) − 𝜶𝒔𝒊
𝒎 (2.22)

In matrix form, this becomes:

𝐖𝒎(𝒌 + 𝟏) = 𝐖𝒎(𝒌) − 𝜶𝒔𝒎(𝐚𝒎−𝟏)𝑻 (2.23)

𝐛𝒎(𝒌 + 𝟏) = 𝐛𝒎(𝒌) − 𝜶𝒔𝒎 (2.24)

where the individual elements of 𝐬𝑚 are given by Equation (2.19).

In some ways it is unfortunate that the algorithm we usually refer to as back-

propagation, given by Equations (2.23) and (2.24), is in fact simply a steepest

descent algorithm. There are many other optimization algorithms that can use the

back-propagation procedure, in which derivatives are processed from the last layer

of the network to the first. For example, conjugate gradient and quasi-Newton

algorithms [14-16] are generally more efficient than steepest descent algorithms,

and yet they can use the same back-propagation procedure to compute the

necessary derivatives. The Levenberg–Marquardt algorithm is very efficient for

training small to medium-size networks [17].

 Chapter 2. Neural Networks

14

2.3 Nonlinear systems identification using neural networks

(Models for the Identification of Nonlinear Dynamical Systems)

In the adaptive control of unknown and non-linear systems, the system must

firstly be identified, that is, considering a model for the system and estimate its

parameters in which it relates the system's input and output with minimum error.

With regard to the capabilities of neural networks in general approximation, our

goal here is to use them in identifying nonlinear systems.

In this sub-section, four models, which were introduced in [4] for the

representation of a single-input single output (SISO) nonlinear plant, are presented.

These models were chosen both for their generality as well as for analytical

tractability. The models are motivated by corresponding models, which have been

used in the adaptive systems literature for the identification of linear systems and

can be considered as their generalizations to nonlinear systems. Since back-

propagation is the principal method that we shall use for the adjustment of

parameters of the identification model, the parameterization of the plant (and hence

the model) is such as to make the application of the procedure relatively

straightforward.

The models of the four classes of plants introduced here can be described by the

following nonlinear difference equations:

𝑀𝑂𝐷𝐸𝐿 𝐼 ∶ 𝑦𝑝(𝑘 + 1) = ∑ 𝑎𝑖𝑦𝑝(𝑘 − 𝑖)𝑛−1
𝑖=0 + 𝑔[𝑢(𝑘), 𝑢(𝑘 − 1), … , 𝑢(𝑘 − 𝑚 + 1)] (2.25)

𝑀𝑂𝐷𝐸𝐿 𝐼𝐼 ∶ 𝑦𝑝(𝑘 + 1) = 𝑓[𝑦𝑝(𝑘), 𝑦𝑝(𝑘 − 1), … , 𝑦𝑝(𝑘 − 𝑛 + 1)] + ∑ 𝛽𝑖𝑢(𝑘 − 𝑖)𝑚−1
𝑖=0 (2.26)

𝑀𝑂𝐷𝐸𝐿 𝐼𝐼𝐼 ∶ 𝑦𝑝(𝑘 + 1) = 𝑓[𝑦𝑝(𝑘), 𝑦𝑝(𝑘 − 1), … , 𝑦𝑝(𝑘 − 𝑛 + 1)] + 𝑔[𝑢(𝑘), 𝑢(𝑘 − 1), … , 𝑢(𝑘 − 𝑚 + 1)] (2.27)

𝑀𝑂𝐷𝐸𝐿 𝐼𝑉 ∶ 𝑦𝑝(𝑘 + 1) = 𝑓[𝑦𝑝(𝑘), 𝑦𝑝(𝑘 − 1), … , 𝑦𝑝(𝑘 − 𝑛 + 1) , 𝑢(𝑘), 𝑢(𝑘 − 1), … , 𝑢(𝑘 − 𝑚 + 1)] (2.28)

where [𝑢(𝑘), 𝑥(𝑘)]represents the input-output pair of the SISO plant at time k. The

functions 𝑓 and g are assumed to be differentiable functions of their arguments. It is

evident that Model IV subsumes Models I-III. However, Model IV is analytically

 Chapter 2. Neural Networks

15

Figure 2.8. Model I: Structure of the plant.

the least tractable and hence for practical applications, some of the other models

might prove more attractive. In this Chapter, each of these models is briefly

described.

Model I: The output of the unknown nonlinear plant in this case is assumed to

depend linearly on its past values and nonlinearly on the past values of the input.

The latter is realized as shown in Fig. 2.8 and consists of tapped delay lines at the

input and the feedback path.

Model II: This model is realized as shown in Fig. 2.9. In this case, the output

depends linearly on the input 𝑢(𝑘) and its past values but nonlinearly on its own

past values. The advantage of this model is that it lends itself readily to control in

practical situation.

Model III: The unknown plant in this case is described by a nonlinear difference

equation of the form:

𝑥(𝑘 + 1) = 𝑓[𝑥(𝑘), 𝑥(𝑘 − 1), … , 𝑥(𝑘 − 𝑛 + 1)] + 𝑔[𝑢(𝑘), 𝑢(𝑘 − 1), … , 𝑢(𝑘 − 𝑚 + 1)] (2.29)

and hence depends nonlinearly on both its past values as well as those of the input.

However, the effects of the input and output values are additive as shown in

equation (2.29). The representation of equation (2.29) is shown in Fig. 2.10.

 Chapter 2. Neural Networks

16

Figure 2.9. Model II: Structure of the plant.

Figure 2.10. Model III: Structure of the plant.

Model IV: As mentioned earlier, this is the most general of all models introduced

here and subsumes the earlier models. The output at any instant in this case is a

nonlinear function of the past values of both the input and the output. Once again,

the representation of the model using tapped delay lines is shown in Fig. 2.11.

 Chapter 2. Neural Networks

17

Figure 2.11. Model IV: Structure of the plant.

The identification model of the plant is composed of neural networks and tapped

delay lines. In each case, the neural network is assumed to contain sufficient

number of layers, and nodes in each layer, so as to be able to match exactly the

input-output characteristics of the corresponding nonlinear mapping in the given

plant. Prom the point of view of mathematical analysis, this implies that the

nonlinear functions in the difference equations describing the plant can be replaced

by neural networks with fixed but unknown weight matrices Wi
∗. Hence, a

theoretical solution to the adaptive identification problem is assumed to exist from

the outset.

 Chapter 2. Neural Networks

18

To identify the plant, an identification model is chosen based on prior

information concerning the class to which it belongs. For example, assuming that

the plant has a structure described by Model III, the model is chosen to have the

form shown in Fig. 2.12. The aim then is to determine the weights of the two neural

networks 𝑁1 and 𝑁2 so that the mapping 𝑁1 is equal to 𝑔[.] and the mapping 𝑁2 is

equal to 𝑓[.]. If 𝑥(𝑘 + 1) and 𝑥̂(𝑘 + 1) are respectively the outputs at stage 𝑘 +

 1 of the plant and the identification model, the error 𝑒(𝑘 + 1) = 𝑥̂(𝑘 +

1) — 𝑥(𝑘 + 1) is used to update the weights of 𝑁1 and 𝑁2; static or dynamic back-

propagation can be used, depending on the structure of the identifier used.

a. Parallel Model: In this case, the structure of the identifier is identical to that of

the plant with 𝑓 and 𝑔 replaced by 𝑁2 and 𝑁1 respectively. This is shown in Fig.

2.12. Since 𝑁2 is in a dynamic feedback loop, the parameters of 𝑁1 and 𝑁2 have to

be adjusted using dynamic back-propagation.

b. Series-Parallel Model: In this case 𝑥(𝑘 + 1) rather than 𝑥̂(𝑘 + 1) is used to

generate the output of the model. This implies that the model is described by the

equation:

𝑥̂(𝑘 + 1) = 𝑁2[𝑥(𝑘), 𝑥(𝑘 − 1), … , 𝑥(𝑘 − 𝑛 + 1)] + 𝑁1[𝑢(𝑘), 𝑢(𝑘 − 1), … , 𝑢(𝑘 − 𝑚 + 1)] (2.30)

Since the model does not include a feedback loop containing a nonlinear

element, static back-propagation rather than dynamic back-propagation of the error

can be used to adjust the weights of the neural network

The two methods outlined above have been discussed extensively in the context

of the identification of linear time-invariant systems with unknown parameters [9].

While the series- parallel method has been shown to be globally stable, similar

results are not available for the parallel model. To avoid many of the analytical

difficulties encountered, as well as to assure stability and simplify the identification

procedure, the series-parallel model was used in [4]. Extensive computer

simulations have revealed that a large class of nonlinear plants can be identified

using the above procedure. However, theoretical studies concerning stability and

 Chapter 2. Neural Networks

19

Figure 2.12. Model III: Structure of identification model.

convergence are still in the initial stages and numerous questions have yet to be

answered.

 Chapter 3. Adaptive Control Using Neural Networks

20

Chapter 3. Adaptive Control Using Neural

Networks

Adaptive control is the control method used by a controller, which must adapt to a

controlled system with parameters, which vary, or are initially uncertain. For

example, as an aircraft flies, its mass will slowly decrease because of fuel

consumption; a control law is needed that adapts itself to such changing conditions.

Adaptive control is different from robust control in that it does not need a priori

information about the bounds on these uncertain or time-varying parameters; robust

control guarantees that if the changes are within given bounds the control law need

not be changed, while adaptive control is concerned with control law changing

itself. Block diagram of adaptive control is shown in Fig. 3.1.

The foundation of adaptive control is parameter estimation, which is branch of

system identification. Common methods of estimation include recursive least

squares and gradient descent. Both of these methods provide update laws which are

used to modify estimates in real time (i.e., as the system operates). Lyapunov

stability is used to derive these update laws and show convergence criterion

(typically persistent excitation, relaxation to this condition are studied in

Concurrent Learning adaptive control). Projection (mathematics) and normalization

are commonly used to improve the robustness of estimation algorithms.

 Chapter 3. Adaptive Control Using Neural Networks

21

Figure 3.1. Block diagram of adaptive control.

The first notable and widespread use of ‘adaptive control’ was in the aerospace

industry during the 1950s in an attempt to further the design of autopilots [18].

After the successful implementation of jet engines into aircraft, flight envelopes

increased by large amounts and resulted in a wide range of operating conditions for

a single aircraft. Flight envelopes grew even more with developing interest in

hypersonic vehicles from the community. The existing autopilots at the time left

much to be desired in the performance across the flight envelope, and engineers

began experimenting with methods that would eventually lead to Model Reference

Adaptive Control (MRAC). One of the earliest MRAC designs, developed by

Whitaker [19-20], was used for flight control. During this time however, the notion

of stability in the feedback loop and in adaptation was not well understood or as

mature as today. Parks was one of the first to implement Lyapunov based

adaptation into MRAC [21]. An immature theory coupled with bad and/or

incomplete hardware configurations led to significant doubts and concerns in the

adaptive control community, especially after the crash of the X-15. This caused a

major, albeit necessary, detour from the problem of adaptation to focus on stability.

The idea of Neural Networks as a mathematical logic system was developed

during the 1940s by McCulloch and Pitts [22]. The first presentation of a learning

rule for synaptic modification came from Hebb in 1949 [23]. While many papers

and books were published on subjects related to neural networks over the next two

 Chapter 3. Adaptive Control Using Neural Networks

22

decades, perhaps the most important accomplishment was the introduction of the

Perceptron and its convergence theorem by Rosenblatt in 1958 [24]. Widrow and

Hoff then proposed the trainable Multi-Layered Perceptron in 1962 using the Least

Mean Square Algorithm [25], but Minsky and Papert then showed the fundamental

limitations of single Perceptron, and also proposed the ‘credit assignment problem’

for Multi-Layer Perceptron structures [26]. After a period of diminished funding

and interest, these problems were finally solved in the early 1980s. Shortly after

this, Hopfiel [27] showed that information could be stored in these networks which

led to a revival in the field. He was also able to prove stability, but convergence

only to a local minimum not necessarily to the expected/desired minimum. This

period also saw the re-introduction of the back-propagation algorithm [28], which

has become extremely relevant to neural networks in control. Radial Basis

Functions (RBFs) were created in the late 80s by Broomhead and Lowe [29] and

were shortly followed by Support Vector Machines (SVMs) in the early 90s [30].

Parametric adaptive control is the problem of controlling the output of a system

with a known structure but unknown parameters. To make the problem analytically

tractable, in adaptive systems theory the plant to be controlled is assumed to be

linear time-invariant with unknown parameters. These parameters can be

considered as the elements of a vector 𝑝. If 𝑝 is known, the parameter vector 𝜃 of a

controller can be chosen as 𝜃∗ so that the plant together with the fixed controller

behaves like a reference model described by a linear difference (or differential)

equation with constant coefficients. If 𝑝 is unknown, the vector 𝜃(𝑡) has to be

adjusted on-line using all the available information concerning the system.

Two distinct approaches to the adaptive control of an unknown plant axe (i)

direct control and (ii) indirect control. In direct control, the parameters of the

controller axe directly adjusted to reduce some norm of the output error. In indirect

control, the parameters of the plant are estimated as 𝑝(𝑡) at any time instant and the

parameter vector 𝜃(𝑡) of the controller is chosen assuming that 𝑝̂(𝑡) represents the

true value of the plant parameter vector. Even when the plant is assumed to be

 Chapter 3. Adaptive Control Using Neural Networks

23

Figure 3.2. Direct adaptive control using neural networks.

linear and time-invariant, both direct and indirect adaptive control result in

nonlinear systems. When the plant is nonlinear and dynamic (i.e. the present value

of its output depends upon the past values of the input and the output respectively),

a neural network can be used as a controller as shown in Fig. 3.2. This corresponds

to direct control.

3.1 Direct adaptive control

In conventional direct adaptive control theory, methods for adjusting the

parameters of a controller based on the measured output error rely on concepts such

as positive realness and/or passivity. By making suitable assumptions concerning

the plant and the reference model, it is shown that the direction in which a

parameter is to be adjusted can be obtained by correlating two signals that can be

measured. Using either Liapunov theory or hyper-stability theory it is shown that

the adjustments of all the controller parameters based on such adaptive laws result

in the stability of the overall system.

 Chapter 3. Adaptive Control Using Neural Networks

24

At present, methods for directly adjusting the parameters of the controller (the

neural network Nc in Fig. 3.2) in a stable fashion based on the output error axe not

available. This is due to the nonlinear nature of both the plant and the controller.

Even back-propagation cannot be used directly, since the plant is unknown and

hence cannot be used to generate the desired partial derivatives. Hence, until direct

control methods are developed, adaptive control of nonlinear dynamical systems

has to be carried out using indirect control methods.

3.2 Indirect adaptive control

As mentioned earlier, when indirect control is used to control a nonlinear

system, the plant is parameterized using one of the models described in the

previous Chapter and the parameters of the model are updated using the

identification error. The controller parameters in turn are adjusted by back-

propagating the error (between the identified model and the reference model

outputs) through the identified model. A block diagram of such an adaptive system

is shown in Fig. 3.3.

Both identification and control can be carried out at every instant or after

processing the data over finite intervals. When external disturbances and/or noise

are not present in the system, it is reasonable to adjust the control and identification

parameters synchronously. However, when sensor noise or external disturbances

are present, identification is carried out at every instant while control parameter

updating is carried out over a slower time scale, to assure robustness (i.e., control

parameters are adjusted with a lower frequency than identification parameters).

 Chapter 3. Adaptive Control Using Neural Networks

25

Figure 3.3. Indirect adaptive control using neural networks.

3.3 NARMA model and its approximations

The controller structure in general is dependent on the system's identification

model, so the system's identification model can be considered so that a simple

structure controller can be obtained.

As shown in Chapter 2 the NARMA model is an exact representation of the

nonlinear plant in a neighborhood of the equilibrium state. For reasons given

toward the end of Chapter 2, the model is not convenient for the computation of a

control input to the plant to track a desired reference signal. In view of this, we

propose two approximations to the NARMA model called the NARMA-L1 and the

NARMA-L2 models. The main feature of these models is that the control input at

time (the instant of interest in the control problem) occurs linearly in the equation

relating inputs and outputs. This, in turn, permits easy algebraic computation of the

control inputs without requiring a separate controller neural network. The fact that

the use of neural networks is restricted to the identification model implies that only

 Chapter 3. Adaptive Control Using Neural Networks

26

static gradient methods need to be used. The equations for the two proposed

approximate models are given below.

NARAM model:

𝑦(𝑘 + 𝑑) = 𝐹̅[𝑦(𝑘), 𝑦(𝑘 − 1), … , 𝑦(𝑘 − 𝑛 + 1), 𝑢(𝑘), 𝑢(𝑘 − 1), … , 𝑢(𝑘 − 𝑛

+ 1)] (3.1)

Now, with the Taylor series expansion of 𝐹̅ around the vector (𝑦(𝑘), … , 𝑦(𝑘 −

𝑛 + 1), 𝑢(𝑘) = 0, … , 𝑢(𝑘 − 𝑛 + 1) = 0) and 𝑢(𝑘), and then with the removal of

high order sentences of the Taylor series expansion, the following models can be

approximated, respectively:

NARAM_L1 model:

𝑦(𝑘 + 𝑑) = 𝑓0[𝑦(𝑘), 𝑦(𝑘 − 1), … , 𝑦(𝑘 − 𝑛 + 1)]

+ ∑ 𝑔𝑖[𝑦(𝑘), 𝑦(𝑘 − 1), … , 𝑦(𝑘 − 𝑛 + 1)]

𝑛−1

𝑖=0

𝑢(𝑘 − 𝑖) (3.2)

NARAM_L2 model:

𝑦(𝑘 + 𝑑) = 𝑓0̅[𝑦(𝑘), 𝑦(𝑘 − 1), … , 𝑦(𝑘 − 𝑛 + 1)]

+ 𝑔0̅̅ ̅[𝑦(𝑘), 𝑦(𝑘 − 1), … , 𝑦(𝑘 − 𝑛 + 1), 𝑢(𝑘 − 1), … , 𝑢(𝑘 − 𝑛

+ 1)]𝑢(𝑘) (3.3)

It is seen that 𝑓0 and 𝑔0 in the equation describing NARMA-L1 are only

functions of the past values of the outputs, and 𝑢(𝑘 − 1) … 𝑢(𝑘 − 𝑛 + 1)as well as

𝑢(𝑘) occur linearly on the right-hand side (RHS) of (3.2). In contrast to this,

NARMA-L2 model is described by only two terms in the RHS of (3.3) where both

𝑓0̅ and 𝑔0̅̅ ̅ are functions of 𝑦(𝑘), 𝑦(𝑘 − 1), … , 𝑦(𝑘 − 𝑛 + 1) and 𝑢(𝑘), 𝑢(𝑘 −

1), … , 𝑢(𝑘 − 𝑛 + 1).

In the rest of this Chapter as well as in the following Chapter we justify the use

of NARAM_L2 model in identification and control problems.

 Chapter 3. Adaptive Control Using Neural Networks

27

3.4 Identification using NARAM-L2 model

As it can be seen for the equations (3.2) and (3.3), if the NARMA-L1 model is used

to identify a system, 𝑛 + 1 neural networks are required for approximation of the

following functions: 𝑓0, 𝑔0, … , 𝑔𝑛−1. However, to identify the system using the

approximate model NARMA-L2, two neural networks is only needed for the

approximation of the following functions: 𝑓0̅, 𝑔0̅̅ ̅. Therefore, from the practical

point of view, the NARMA-L2 model is easier to apply than the NARMA-L1

model. Fig. 3.4 is shown block diagram of NARMA-L2 model in which 𝑦∗(𝑘) is an

approximate of system’s output and 𝑒(𝑘) is used to train the neural networks.

3.5 Adaptive control using NARAM-L2 model

Here, the objective is controlling an unknown nonlinear system which is based on

its input and output data, so that the system follows desired signal 𝑦𝑟(𝑘). The

Figure 3.4. Block diagram of NARMA-L2 model.

 Chapter 3. Adaptive Control Using Neural Networks

28

control that we are using in this system is adaptive control indirectly, which is

discussed before in this Chapter.

Now, given the goal of matching 𝑦(𝑘) with 𝑦𝑟(𝑘), if we substitute the 𝑦(𝑘) with

𝑦𝑟(𝑘) in the above approximation equations, and solve the resulting equation in

terms of 𝑢(𝑘), the actual output of the real system can be matched to its optimal

value, so the control objective is obtained:

𝑦(𝑘 + 𝑑) = 𝑓0̅[𝑦(𝑘), 𝑦(𝑘 − 1), … , 𝑦(𝑘 − 𝑛 + 1)] +

𝑔0̅̅ ̅[𝑦(𝑘), 𝑦(𝑘 − 1), … , 𝑦(𝑘 − 𝑛 + 1), 𝑢(𝑘 − 1), … , 𝑢(𝑘 − 𝑛 + 1)]𝑢(𝑘) (3.4)

if

 𝑦(𝑘 + 𝑑) = 𝑦𝑟(𝑘 + 𝑑) (3.5)

then

𝑢(𝑘) =
[𝑦𝑟(𝑘+𝑑)−𝑓0̅̅ ̅(𝑦(𝑘),…,𝑦(𝑘−𝑛+1),𝑢(𝑘−1),…,𝑢(𝑘−𝑛+1))]

𝑔0̅̅̅̅ (𝑦(𝑘),…,𝑦(𝑘−𝑛+1),𝑢(𝑘−1),…,𝑢(𝑘−𝑛+1))
 (3.6)

As you can see from Fig. 3.5 and 3.6, the controller is classic and only performs

simple algebra actions based on the neural network signals and does not require a

separate neural network for control action.

 Chapter 3. Adaptive Control Using Neural Networks

29

Figure 3.5. Block diagram of adaptive control system for NARMA-L2 model.

Figure 3.6. Algebraic controller.

 Chapter 4. Simulation Results

30

Chapter 4. Simulation Results

In this Chapter, algorithm design for identification and adaptive control based on

NARMA-L2 model will be described. Matlab simulation along with different

examples of nonlinear systems are also provided.

4.1 Algorithm design for identification

The following steps are considered for identification process:

1. Choose the initial conditions for 𝑤i,j and 𝑏𝑖, the number of input and output

sampling, number of network neurons, activation functions, network learning

rates, the number of epochs or cycles.

2. For each input, the output of the network is obtained by the number of cycles.

3. In each cycle, the identification error (𝑦 − 𝑦∗) is obtained, which is equal to the

output of the system minus the output of the network).

4. Setting network parameters with respect to the identification error.

The neural network used for identification purpose is shown in Fig. 4.1. This neural

network uses the 𝑡𝑎𝑛ℎ activation function for the first and second layers and the

linear activation function for the third layer.

 Chapter 4. Simulation Results

31

Figure 4.1. Neural network with the structure of
3

2
, 20,10,1

4.1.1 MATLAB simulation

In this sub-section, MATLAB simulation for the identification process is described.

The number of neurons in the first layer of the neural network, the second layer, the

number of sampling from the system input and the number of sampling from the

system output are assigned as follows:

S1=20;%number of neuron1%

S2=10;%number of neuron2%

dy=2;%number of delay plant output%

du=3;%number of delay plant input%

The initial conditions for weights and bias are assigned as follows:

a=.0003;

w11=zeros(s1,du);

w12=zeros(s1,dy);

b1=a*rand(s1,1);

w13=zeros(s2,s1);

b2=a*rand(s2,1);

wend1=zeros(1,s2);

 Chapter 4. Simulation Results

32

bend1=(0);

w21=zeros(s1,du);

w22=zeros(s1,dy);

b3=a*rand(s1,1);

w23=zeros(s2,s1);

b2=a*rand(s2,1);

wend2=zeros(1,s2);

bend2=(1);

The number of epochs or cycles as well as the learning rate are set as follows:

Epoch = 50;

alfa = .1; %learning rate%

The main part of the program is as follows. The data is given on-line to the

network, 𝑢 is the system input and 𝑦 output system.

l = length (u);

for k=1:l

For each data, the network trains with the number of epochs.

for i=1:epoch

Sampling is done as follows:

for j=1:du

 utdl(j,1)=u(k-j+1);

end

for j=1:dy

 ytdl(j,1)=y(k-j+1);

end

 Chapter 4. Simulation Results

33

ytdl, utdl are selected as the network input. The first layer of the neural network is

formed as follows:

n1=(w11*utdl)+(w12*ytdl)+b1;

a1=tanh(n1);

n3=(w21*utdl)+(w22*ytdl)+b3;

a3=tanh(n3);

and the second and third layers are formed as follows:

n2=(w13*a1)+b2;

a2=tanh(n2);

n2=(w23*a3)+b2;

a2=tanh(n2);

aend1=(wend1*a2)+bend1;

aend2=(wend2*a2)+bend2;

The network’s output that has to be similar to the actual system’s output, is

obtained here:

y*(k)=aend1+(aend2*u(k));

At this step, the identification error is obtained.

e(k)=(y(k)-y*(k));

With respect to the identification error of the neural network, the sensitivities are

calculated based on the error back-propagation method:

delta13=-2*e(k);

delta12=(1-(a2.^2)).*wend1'*delta13;%s2*1

 Chapter 4. Simulation Results

34

delta11=(1-(a1.^2)).*(w13'*delta12);%s1*1

delta23=-2*e(k);

delta22=(1-(a2.^2)).*wend2'*delta23;%s2*1

delta21=(1-(a3.^2)).*(w23'*delta22);%s1*1

Depending on the sensitivities’ values, as well as the learning rate’s value, the

weights and bias will changed in each epoch as follows:

wend1=wend1-alfa*delta13*a2';

bend1=bend1-alfa*delta13;

w13=w13-alfa*delta12*a1';

b2=b2-alfa*delta12;

w11=w11-alfa*delta11*utdl';

w12=w12-alfa*delta11*ytdl';

b1=b1-alfa*delta11;

wend2=wend2-alfa*delta23*a2';

bend2=bend2-alfa*delta23;

w23=w23-alfa*delta22*a3';

b2=b2-alfa*delta22;

w21=w21-alfa*delta21*utdl';

w22=w22-alfa*delta21*ytdl';

b3=b3-alfa*delta21;

 end

end

4.1.2 Identification examples

Two examples have been considered here to show the identification process using

NARMA-L2 model.

 Chapter 4. Simulation Results

35

Example 1: Identification of a first-degree plant that is characterized by the

following equation:

𝑦(𝑘 + 1) = 𝑠𝑖𝑛[𝑦(𝑘)] + 𝑢(𝑘) ∗ (5 + 𝑐𝑜 𝑠[(𝑦(𝑘) ∗ 𝑢(𝑘)]) (4.1)

The experimental results are obtained for different inputs, different training rates

and different epochs. Fig 4.2 shows the first input using the following formula:

𝑢 = .5 ∗ (𝑠𝑖𝑛 (
2𝜋𝑘

50
) + 𝑠𝑖𝑛 (

2𝜋𝑘

100
)) (4.2)

Fig. 4.2. Plant input using equation (4.2) for first example.

The output of system based on equation (4.1) and (4.2) is shown in Fig. 4.3.

0 50 100 150 200 250 300 350
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
plant input

 Chapter 4. Simulation Results

36

Fig. 4.3. Plant output for first example.

The identification results for different epochs and learning rates along with

identification errors are shown in Figs. 4 and 5. As you can see from the results, the

network will be unstable using high learning rates.

0 50 100 150 200 250 300 350
-5

-4

-3

-2

-1

0

1

2

3

4

5
plant output

 Chapter 4. Simulation Results

37

Fig. 4.4. Top: network output and bottom: identification error, for 100 epochs and

learning rate equal to 0.01.

0 50 100 150 200 250 300
-5

-4

-3

-2

-1

0

1

2

3

4

5
network output

0 50 100 150 200 250 300
-5

-4

-3

-2

-1

0

1
eror=y-y*

 Chapter 4. Simulation Results

38

Fig. 4.5. Top: network output and bottom: identification error, for 100 epochs and

learning rate equal to 0.02.

0 50 100 150 200 250 300

-4

-3

-2

-1

0

1

2

3

4 y=plant output

0 50 100 150 200 250 300
-8

-7

-6

-5

-4

-3

-2

-1

0

1
x 10

262

eror=y-y*

 Chapter 4. Simulation Results

39

Fig. 4.6. Top: Step function as second input.

Fig. 4.7. Plant output using step function.

Fig 4.6 shows the second input for first example using step function. The output

of system based on step function as input and equation (4.2) is shown in Fig.

4.7. In addition, the identification results along with identification errors are

shown in Fig. 8. As it can be seen, the identification operation is carried out with

high precision.

0 20 40 60 80 100 120 140 160
-0.5

0

0.5

1

1.5

2
plant input

0 20 40 60 80 100 120 140 160 180
-2

0

2

4

6

8

10

12

14
plant output

 Chapter 4. Simulation Results

40

Fig. 4.8. Top: network output and bottom: identification error, for 100 epochs and

learning rate equal to 0.001.

0 20 40 60 80 100 120 140 160
-2

0

2

4

6

8

10

12

14
network output

0 20 40 60 80 100 120 140 160
-0.1

-0.05

0

0.05

0.1

0.15
eror=y-y*

 Chapter 4. Simulation Results

41

Example 2- Identification of a second-order plant that is characterized by the

following equation:

 𝑥1(𝑘 + 1) = .1 ∗ 𝑥1(𝑘) + 2
𝑢(𝑘) + 𝑥2(𝑘)

1 + (𝑢(𝑘) + 𝑥2(𝑘))2
 (4.3)

 𝑥2(𝑘 + 1) = .1 ∗ 𝑥2(𝑘) + 𝑢(𝑘) (2 +
𝑢2(𝑘)

1 + 𝑥1
2(𝑘) + 𝑥2

2(𝑘)
) (4.4)

𝑦(𝑘) = 𝑥1(𝑘) + 𝑥2(𝑘) (4.5)

The output of system based on equation (4.2) and (4.5) is shown in Fig. 4.9. The

identification results for different epochs and learning rates along with

identification errors are shown in Figs. 10 and 11. As you can see from the results,

for higher learning rates and similar epoch, the network at a higher rate performs

better identification.

Fig. 4.9. Plant output for second example.

0 50 100 150 200 250 300 350
-3

-2

-1

0

1

2

3
plant output

 Chapter 4. Simulation Results

42

Fig. 4.10. Top: network output and bottom: identification error, for 50 epochs and

learning rate equal to 0.01.

0 50 100 150 200 250 300
-3

-2

-1

0

1

2

3
network output

0 50 100 150 200 250 300
-2

-1.5

-1

-0.5

0

0.5
eror=y-y*

 Chapter 4. Simulation Results

43

Fig. 4.11. Top: network output and bottom: identification error, for 50 epochs and

learning rate equal to 0.1.

0 50 100 150 200 250 300
-3

-2

-1

0

1

2

3
network input

0 50 100 150 200 250 300
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015
eror=y-y*

 Chapter 4. Simulation Results

44

The output of system based on step function as input and equation (4.5) is

shown in Fig. 4.12. In addition, the identification results along with

identification errors are shown in Fig. 4.13. As it can be seen, the identification

operation is carried out with high precision.

Fig. 4.12. Plant output using step function for second example.

0 20 40 60 80 100 120 140 160
-1

0

1

2

3

4

5

6

7

8
plant output

 Chapter 4. Simulation Results

45

Fig. 4.13. Top: network output and bottom: identification error, for 100 epochs and

learning rate equal to 0.01.

0 20 40 60 80 100 120 140 160
-1

0

1

2

3

4

5

6

7

8
network output

0 20 40 60 80 100 120 140 160
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
eror=y-y*

 Chapter 4. Simulation Results

46

4.2 Algorithm design for adaptive control

The following steps are considered for adaptive control process:

1. Choose the initial conditions for 𝑤i,j and 𝑏𝑖, the number of input and output

sampling, number of network neurons, activation functions, network learning

rates, the number of epochs or cycles.

2. For each reference input, the system input is obtained by the number of cycles:

𝑢(𝑘)

=
[𝑦𝑟(𝑘 + 𝑑) − 𝑓0̅(𝑦(𝑘), … , 𝑦(𝑘 − 𝑛 + 1), 𝑢(𝑘 − 1), … , 𝑢(𝑘 − 𝑛 + 1))]

𝑔0̅̅ ̅(𝑦(𝑘), … , 𝑦(𝑘 − 𝑛 + 1), 𝑢(𝑘 − 1), … , 𝑢(𝑘 − 𝑛 + 1))
 (4.6)

3. In each cycle, the identification error (𝑦 − 𝑦∗) is obtained, which is equal to the

output of the system minus the output of the network).

4. Setting network parameters with respect to the identification error.

4.2.1 MATLAB simulation

In this sub-section, MATLAB simulation for the adaptive control process is

described. First, the input of the reference is selected and the initial values of the

input, the output of the system, are selected as zero.

yr = 2*(sin(2*pi*k/50)+sin(2*pi*k/100));%reference

u = 0.*yr;

y = 0.*yr;

The number of neurons in the first layer of the neural network, the second layer, the

number of sampling from the system input and the number of sampling from the

system output are assigned as follows:

S1=20;%number of neuron1%

S2=10;%number of neuron2%

dy=2;%number of delay plant output%

 Chapter 4. Simulation Results

47

du=3;%number of delay plant input%

The initial conditions for weights and bias are assigned as follows:

a=.0003;

w11=zeros(s1,du);

w12=zeros(s1,dy);

b1=a*rand(s1,1);

w13=zeros(s2,s1);

b2=a*rand(s2,1);

wend1=zeros(1,s2);

bend1=(0);

w21=zeros(s1,du);

w22=zeros(s1,dy);

b3=a*rand(s1,1);

w23=zeros(s2,s1);

b2=a*rand(s2,1);

wend2=zeros(1,s2);

bend2=(1);

The number of epochs or cycles as well as the learning rate are set as follows:

epoch =50;

alfa=.1;%learning rate%

The main part of the program is as follows. The data is given on-line to the

network, 𝑢 is the system input and 𝑦 output system.

l = length (u);

for k=1:l

For each data, the network trains with the number of epochs.

for i=1:epoch

 Chapter 4. Simulation Results

48

Sampling is done as follows:

for j=1:du

utdl(j,1)=u(k-j+1);

end

for j=1:dy

ytdl(j,1)=y(k-j+1);

end

ytdl, utdl are selected as the network input. The first layer of the neural network is

formed as follows:

n1=(w11*utdl)+(w12*ytdl)+b1;

a1=tanh(n1);

n3=(w21*utdl)+(w22*ytdl)+b3;

a3=tanh(n3);

and the second and third layers are formed as follows:

n2=(w13*a1)+b2;

a2=tanh(n2);

n2=(w23*a3)+b2;

a2=tanh(n2);

aend1=(wend1*a2)+bend1;

aend2=(wend2*a2)+bend2;

The new system’s input is obtained at this stage.

u(k) = (((yr(k))-aend1)/aend2);

The new system’s input is passed through the nonlinear system at this stage to

obtain a new output.

x1(k+1)=.1*x1(k)+(2*(u(k)+x2(k))/(1+(u(k)+x2(k))^2));

x2(k+1)=.1*x2(k)+u(k)*(2+(u(k)^2/(1+x1(k)^2+x2(k)^2)));

 Chapter 4. Simulation Results

49

y(k)=x1(k)+x2(k);

The network’s output that has to be similar to the actual system’s output, is

obtained here:

y*(k)=aend1+(aend2*u(k));

At this step, the identification error is obtained.

e(k)=(y(k)-y*(k));

With respect to the identification error of the neural network, the sensitivities are

calculated based on the error back-propagation method:

delta13=-2*e(k);

delta12=(1-(a2.^2)).*wend1'*delta13;%s2*1

delta11=(1-(a1.^2)).*(w13'*delta12);%s1*1

delta23=-2*e(k);

delta22=(1-(a2.^2)).*wend2'*delta23;%s2*1

delta21=(1-(a3.^2)).*(w23'*delta22);%s1*1

Depending on the sensitivities’ values, as well as the learning rate’s value, the

weights and bias will changed in each epoch as follows:

wend1=wend1-alfa*delta13*a2';

bend1=bend1-alfa*delta13;

w13=w13-alfa*delta12*a1';

b2=b2-alfa*delta12;

w11=w11-alfa*delta11*utdl';

w12=w12-alfa*delta11*ytdl';

b1=b1-alfa*delta11;

wend2=wend2-alfa*delta23*a2';

 Chapter 4. Simulation Results

50

bend2=bend2-alfa*delta23;

w23=w23-alfa*delta22*a3';

b2=b2-alfa*delta22;

w21=w21-alfa*delta21*utdl';

w22=w22-alfa*delta21*ytdl';

b3=b3-alfa*delta21;

 end

end

4.2.2 Adaptive control examples

Two examples have been considered here to show the adaptive control process

using NARMA-L2 model.

Example 1: adaptive control of a first-degree plant that is characterized by the

following equation:

𝑦(𝑘 + 1) = 𝑠𝑖𝑛[𝑦(𝑘)] + 𝑢(𝑘) ∗ (5 + 𝑐𝑜𝑠[𝑦(𝑘) ∗ 𝑢(𝑘)]) (4.7)

The experimental results are obtained for different inputs, different training

rates, and different epochs are shown in Figs. 15 and 16. Fig 4.14 shows the

reference input using the step function:

 Chapter 4. Simulation Results

51

Fig. 4.14. Reference input using step function.

0 10 20 30 40 50 60 70 80 90
-1

-0.5

0

0.5

1

1.5

2
yr

0 10 20 30 40 50 60 70 80 90
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
plant input

 Chapter 4. Simulation Results

52

Fig. 4.15. Top: network input, middle: network output and bottom: identification

error, for 50 epochs and learning rate equal to 0.01.

0 10 20 30 40 50 60 70 80 90
-1

-0.5

0

0.5

1

1.5

2

2.5
plant output

0 10 20 30 40 50 60 70 80 90
-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1
eror=y-y*

 Chapter 4. Simulation Results

53

0 10 20 30 40 50 60 70 80 90
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3
plant input

0 10 20 30 40 50 60 70 80 90
-1

-0.5

0

0.5

1

1.5

2

2.5
plant output

 Chapter 4. Simulation Results

54

Fig. 4.16. Top: network input, middle: network output and bottom: error signal, for

100 epochs and learning rate equal to 0.01.

Fig 4.17. shows the second reference for first example using sinusoids functions. In

addition, the adaptive control results along with system’s errors are shown in Fig.

18. As it can be seen, the adaptive control operation is carried out with high

precision.

Fig. 4.17. Reference input using sinusoids functions.

0 10 20 30 40 50 60 70 80 90
-5

-4

-3

-2

-1

0

1

2

3

4

5
x 10

-3 eror=y-y*

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

8
yr

 Chapter 4. Simulation Results

55

0 10 20 30 40 50 60 70 80 90
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
plant input

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

8
plant output

 Chapter 4. Simulation Results

56

Fig. 4.18. Top: network input, middle: network output and bottom: error signal, for

100 epochs and learning rate equal to 0.01.

Example 2- Adaptive control of a second-order plant that is characterized by the

following equation:

 𝑥1(𝑘 + 1) = .1 ∗ 𝑥1(𝑘) + 2
𝑢(𝑘) + 𝑥2(𝑘)

1 + (𝑢(𝑘) + 𝑥2(𝑘))2
 (4.8)

 𝑥2(𝑘 + 1) = .1 ∗ 𝑥2(𝑘) + 𝑢(𝑘) (2 +
𝑢2(𝑘)

1+𝑥1
2(𝑘)+𝑥2

2(𝑘)
) (4.9)

 𝑦(𝑘) = 𝑥1(𝑘) + 𝑥2(𝑘) (4.10)

The experimental results are obtained for different inputs, different training rates

and different epochs are shown in Figs. 19 and 20. As it can be seen from the

results, the system with higher epochs results in better tracking of desired output.

and adaptive control of non-linear system.

0 10 20 30 40 50 60 70 80 90
-4

-2

0

2

4

6

8

10
x 10

-3 eror=y-y*

 Chapter 4. Simulation Results

57

0 20 40 60 80 100 120 140 160 180
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
plant input

0 20 40 60 80 100 120 140 160 180
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
plant output

 Chapter 4. Simulation Results

58

Fig. 4.19. Top: network input, middle: network output and bottom: error signal, for

100 epochs and learning rate equal to 0.005.

0 20 40 60 80 100 120 140 160 180
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5
eror=y-y*

0 20 40 60 80 100 120 140 160 180
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
plant input

 Chapter 4. Simulation Results

59

Fig. 4.19. Top: network input, middle: network output and bottom: error signal, for

150 epochs and learning rate equal to 0.005.

0 20 40 60 80 100 120 140 160 180
-1

-0.5

0

0.5

1

1.5

2

2.5
plant output

0 20 40 60 80 100 120 140 160 180
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
eror=y-y*

 Chapter 5. Conclusions

60

Chapter 5. Conclusions

From the above discussion, we conclude that by approximating the exact model of

NARMA for each nonlinear system, we can reach to the approximate models of

NARMA-L1, NARMA-L2. These approximate models with respect to the actual

model is not only highly accurate for identification purpose, but also make the

controller a simple classical controller and no longer need a separate neural

network for controller with its own problems (weight correction problems).

Therefore, the adaptive control structure has been simplified, while the precision is

stayed very high and therefore these approximate models are usually used in the

adaptive control of nonlinear systems.

Perhaps of greatest significance for the use of neural networks in the control of

nonlinear dynamical systems is the fact that the NARMA-L1 and NARMA-L2

models are more tractable analytically than the NARMA model. If the stability,

controllability and observability, as well as the zero dynamics of dynamical

systems can be studied for the class of systems represented by these approximate

models, the results can be extended to NARMA models using robustness

arguments. It is believed that this approach may provide a handle for attacking the

stable adaptive control problem of nonlinear plants.

 References

References

[1] Narendra, K. S. and Mukhopadhyay S., "Adaptive Control Using Neural

Networks and Approximate Models," IEEE Trans. On Neural Networks, vol. 8, pp.

475-485, 1997.

[2] Saerens, M. and Soquet, A., “A neural controller,” in Proc. 1st Int. Conf.

Artificial Neural Networks, London, Oct. 1989, pp. 211-215.

[3] Jordan, M. I. and Jacobs, A., “Learning to control an unstable system with

forward modeling,” Advances in Neural Inform. Processing Syst., vol. 2, pp. 324-

331, 1990.

[4] Narendra, K. S. and Parthasarathy, K., “Identification and control of dynamical

systems using neural networks,” IEEE Trans. Neural Networks, vol. 1, pp. 4-27,

1990.

[5] Levin, A. U. and Narendra, K. S., "Control of nonlinear dynamical systems

using neural networks: Part II Identification and Part III Control," IEEE Trans.

Neural Networks, vol. 4, Mar. 1993, also IEEE Trans. Neural Networks, vol. 7, Jan.

1996, pp. 30-42; also Center Syst. Sci., Yale Univ., New Haven, CT, Tech. Rep.

9116 and 9117.

[6] Cabrera, J. B. D. and Narendra, K. S., "On regulation and tracking in nonlinear

discrete-

Univ., New Haven, CT, Tech. Rep.

[7] Narendra, K. S. and Parthasarathy, K., "Gradient methods for the optimization

of dynamical systems containing neural networks," IEEE Trans. Neural Networks,

vol. 2, pp. 252-262, Mar. 1991.

[8] Noriega, J. R. and Wang, H., "A direct adaptive neural-network control for

unknown nonlinear systems and its application," IEEE Trans. Neural Networks,

vol. 9, pp. 27-33, Jan. 1998.

 References

[9] Narendra, K. S. and Annaswamy, A. M. (1989). Stable adaptive systems.

Englewood Cliffs, NJ: Prentice-Hall.

[10] Hopfield, J. J. (1982). Neural networks and physical systems with emergent

collective computational abilities. Proceedings of the National Academy of

Sciences, USA 79:2554-2558.

[11] Werbos PJ. Beyond regression: New tools for prediction and analysis in the

behavioral sciences. Ph.D. Thesis, Harvard University, Cambridge, MA, 1974.

Also published as The Roots of Back-propagation. John Wiley & Sons:

New York, 1994.

[12] Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-

propagating errors. Nature 1986; 323:533–536.

[13] Hagan MT, Demuth HB, Beale MH. Neural Network Design. PWS

Publishing: Boston, 1996.

[14] Shanno DF. Recent advances in numerical techniques for large-scale

optimization. In Neural Networks for Control, Miller, Sutton and Werbos (eds).

MIT Press: Cambridge, MA, 1990.

[15] Scales LE. Introduction to Non-Linear Optimization. Springer-Verlag: New

York, 1985.

[16] Charalambous C. Conjugate gradient algorithm for efficient training of

artificial neural networks. IEEE Proceedings 1992; 139(3):301–310.

[17] Hagan MT, Menhaj M. Training feedforward networks with the Marquardt

algorithm. IEEE Transactions on Neural Networks 1994; 5(6):989–993.

[18] Astrom, K.; Wittenmark, B. Adaptive Control; Dover Publications, Inc.:

Mineola, NY, USA ,2008.

[19] Whitaker, H.; Yamron, J.; Kezer, A. Design of Model Reference Adaptive

Control Systems for Aircraft (Report R-164); MIT Press Instrumentation

Laboratory: Cambridge, MA, USA, 1958.

 References

[20] Osburn, P.; Whitaker, H.; Kezer, A. New Developments in the Design of

Model Reference Adaptive Control Systems (Paper No. 61-39); Institute of the

Aerospace Sciences: Easton, PA, USA, 1961.

[21] Parks, P. Lyapunov Redesign of Model Reference Adaptive Control Systems.

IEEE Trans. Autom. Control 1966, 11, 362–367.

[22] McCulloch, W.; Pitts, W. A Logical Calculus of the Ideas Immanent in

Nervous Activity. Bull. Math. Biophys. 1943, 5, 115–133.

[23] Hebb, D. The Organization of Behavior; Wiley: Hoboken, NJ, USA, 1949.

[24] Rosenblatt, F. The Perceptron: A Perceiving and Recognizing Automaton

(Report: 85-460-1); Cornell Aeronatical Laboratory: Buffalo, NY, USA, 1957.

[25] Widrow, B.; Hoff, M. Adaptive Switching Circuits. IRE WESCON

Convention Record, 1960. pp. 96–104. Available online: http://www-

isl.stanford.edu/~widrow/papers/c1960adaptive

[26] Minsky, M.; Papert, S. Perceptrons; MIT Press: Cambridge, MA, USA,

1969.Systems 2014, 2 658

[27] Hopfield, J.J. Neural Networks and Physical Systems with Emergent

Collective Computational Abilities. Proc. Nat. Acad. Sci. USA 1982, 79, 2554–

2558.

[28] Bryson, A.; Denham, W.; Dreyfus, S. Optimal Programming Problems with

Inequality Constraints I: Necessary Conditions for Extremal Solutions. AIAA J.

1963, 1, 2544–2550.

[29] Broomhead, D.; Lowe, D. Multivariable Functional Interpolation and Adaptive

Networks. Complex Syst. 1988, 2, 321–355.

[30] Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20,

273–297.

http://www-isl.stanford.edu/~widrow/papers/c1960adaptive
http://www-isl.stanford.edu/~widrow/papers/c1960adaptive

